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Abstract

In this paper, by taking the analytic function ¢(Z) we obtained the sharp upper bounds of the Fekete-Szego

functional ‘as —,uazz‘ and defined the general class M g‘hﬁ (¢) by using the convolution and subordinate. We

also discussed some applications of our main result.
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1 INTRODUCTION

Let A be the class of analytic function f which is 7 f '(z)/ f (z) < ¢(z) and
defined on the unit disk A= {z € C:|z| <1} of 1+21"(2)/ ' (z)<¢(z)  respectively, by
the form presenting various subclasses of starlike and
convex functions.
_ n
fz)=z+ Zan Z The class M (az, @) of a — convex functions with
n=2
respect to ¢ which consists the function f in A
Let the class A has the subclass S which consists and includes several classes as S*(¢), C(¢) and
the univalent functions. For two analytic functions
f and g, the function f is subordinate to g in M (a,(1+(1— Za)z)/(l— Z)) - M (a),

the unit disk A denoted by f < g, for the

analytic function W with |W(ZXS|Z| such that Introduced by Ali et al [1] Which satisfying

f(z)=g(W(z)). If g is univalent, then f < g 1-a) zf ’(Z)+a£1+ zf ”(Z)J < ¢(2)

it and only if f(0)=g(0) and f(A) < g(A). f(2) f'(z)

Ali et al. [2] also introduced several coefficient
problems for P — valent analytic functions. Miller

and Mocanu [5] were introduced and studied the
unit disk A , the analytic univalent function ¢ has O — convex function’s class M (a).

A function p(Z)=1+ p,z+ p222 +... is said to
be in the class P if Re p(Z)> 0. In the open

positive real part and ¢(A) be symmetric with
respect to the real axis, starlike with respect to In 1933 Fekete and Szego proved that
¢(O):1 and ¢'(0)>O. Ma and Minda [4]

introduced the classes S”(¢) and C(¢) satisfying
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4p-3 (u>1)
‘aj—yag‘s 1+exp(%] (0<u<1)
3-4u (u<0)

By Fekete-Szego problem, we can find the sharp
bounds for the non-linear functional ‘as - ,uazz‘ of
any compact family of functions. In 1969, the sharp

bounds for Fekete-Szego functional ‘azz —;ﬁ3‘

for functions in some subclasses of S were
obtained by Keogh and Merk [3].

We have the functions

o0

f(z)=2+>a,z" (1.2)

n=2

z):z+ignz” (1.2)
n=2

z):z+ihnz" (1.3)
n=2

And the convolution of f(z) and g(Z) is defined
by

(fxg)z):= Z+Zangnz” = (g f)2).

Murugusundaramoorthy et al. [6] introduced a new
class M, of functions f € A, by using the

Hadamard product, which satisfying

(f*g)z)
() <

whereg,h e A, (g, >0,h, >0,g, —h, >0)

Our results extend several earlier known works in
[3, 4, 6].

Definition 1.1 Let the functions g(z) and h(Z)
defined in (1.2) and (1.3) respectively with
g,>0, h, >0 andg,—h, >0 for the
analytic function ¢ with  ¢(0)=1 and
#'(0)>0, the function f e A given by (1.1)

is said to be in the class M g‘,f (), fora >0, if it
satisfies

(f*g)2), (f*0)(2)
1_ !
k) ()

To prove our main result, we required the

following Lemma 1.1 of Ali et al. [2]. Let € be
the class of analytic functions W, with conditions

w(0)=0,|w(z) <1

1.1 Lemma

If weQ and W(z)=wW,z +W,z% +---(z€ A)
, then

~t (t<-1)
w, —twf| <41 (-1<t<1)
t (t>1)

For t <—1 or t >1, equality holds if and only if
W(z) =z or one of its rotations. For —1<t <1,

equality holds if and only if W(Z) = 2% or one of

its rotations. Equality holds for t = —1 if and only
if

wW(z)=z(A+2z)/(1+ Az)

Or one of its rotations, while fort =1, equality
holds if and only if

wW(z)=-2(1+2)/(0+ 12)

or one of its rotations.

(0<a<1)

(0<a<1)

1.2 Lemma

If We €2, then, for any complex number t,
w, —twf| < max

And the result is sharp for the functions given by
w(z)=2% or W(z)=z.
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2. FEKETE-SZEGO PEOBLEM And for any complex number
We begin with the following result:

Theorem 2.1

‘a3 —,uazz‘ = (1+ 20()(193 —h,

i)

Let ¢(z)=1+B,z+ B,z +---. If f(z) given
by (1.1) belongs to the class M g’ﬁ (¢) then, for

Where

any real number 1, t— 5[(1+3a)(h2 )+/“ 1+20‘X93 )]812
(1+a) (9. -h,)'B,
B,Ad B,(l+a)(g,-h,} (5-1
(1+2a)(g3—h3) (/JSO‘l) _(12( )2()( zh )228) ( . )Bl
8.5 +a)\9; - 2( )1
a,0 .
a, — pa’l| < 1 (0'1 3,U30'2) Proof . If f € M7}'(¢), then there exist an
‘ ‘ (1+ 205)(g3 B h3) analytic function
B,Ao
(1+2a)h, -g,) (uz0) W(z) =W,z + W, 2% +--- e Q
Such that
Wh
ere ( _a)(f *g)(z)
A-Be (f*h)z)
B, '
fxg)lz
61 a9y (2g)
0578, (1) (2
_ 5[(1+30()(h22 —h2g2)+,u(1+2a)(g3 _h3)]Bl By using
(l+a)2(92 _hz)z "
- _(0-11+a)(g,—h,) f(z)=2+>a,z",
' 2@+2a)g, -hy )8 "
(B, — B J1+a)(g, ~h,) z :z+w z" and h(z :z+oohzn
oL 2ag, 1) )=z ) 2

ol 3a? g,
d?’12 (1+ 20‘)(93 - h3)

And (1—a{z+iangnznj a(z+iangnzn]
n=2 n=2

We get

+
(0-1)1+a)(g,-h,) = " o ’
= h n
72 T o+ 2a)g, —hy)6 2+ 2 2h,2 (Z+Zanhnz j
n=2
(B, + B, )1+ a)*(g, —h,) Then the computation shows that

5B (L+2a)g; —h;)
_ 5(+3a)h? —h,g, )8’
B! (1+ 20‘)(93 - hs)
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(f *g)(z)=1+a (G, . )
(1)) . a, —a’| < B,0 [w. — tw? .
+[a;(g, —hy )J2* ‘3h mz“(uza)(gg—hs)L -we] o (29)
Where
+[a2(hz —h,g, )2+ t=_§_:
(2.4) +5[(1+30!)(h2 h292)+ﬂ(1+2205)(g3_h3)]51
Mzh&(@] —h,)z ( )(l+a) (9: 1)
(f *h),(Z) T (2.10)

+ [333(93 - ha )]Zz

Now the first inequality (1.3) is established as
22 2
+[4a2(h2 —hzgz)z 4o

follows by an application of Lemma 1.1.1f

(2.5) B, sl+3a)hz —h,g, )+ ull+2a)g, —h, B,
And B, (1+ a)z (gz —h, )2
($wlz))y =1+?(Bw) (B cBuiet) (D
o0-1) (52 > 2
+ 22 (Biw ) (26) e
From (2.3), (2.4), (2.5) and (2.6), we get
_(6-11+a)(g,—h,)’
(1+a)(g2 _hz)az =oBw, Hy < (1.,. Za)(gs : )5
4 - oB,w, @7 (Bz - Bl)(l+ a) (gz —h, )2
’ (1+0!)(92 _hz) . 5812(1+2a)(gs_h3)
And o+ 30‘)(h22 - hng)Bf _

6B12(1+20‘)(gs _h3) i
(1+2a)g, — h, Jay + (L +3a YhZ —h,g, Ja2

And Lemma 1.1 gives

= 5(B,w, +B,w? )+ 5(52—1) Bow?
B,Ao
1 : ‘33_/Lla22‘ﬁ(1+2a1)(g3_h3)
(1+2a)g, —h )[éBlW2 + 3B,
313
5(5_1) B2w?2 For
2 17
( 2 ) B W, -1<- B, [1+3a( 292)]8
(1+305)h2 hng/(l-FO!)z(g “h )2 ] Bl (1+a) (gz_h )
2 2
(2.8) N 5[/1(1+ 20()(93 —h )]
1 —h.)?
A computation using (2.7) and (2.8) gives (5 ( ]306) (92 )
> B, <1,
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We have o, < < o,, where o,and o, are as
given in the statement of the theorem.

Now an application of Lemma 1.1 yields

’ 7 (1+2a)(g3 _ha)

For

B, sl@+3a)h2 —h,g, B,
B, (1+a)2(gz _h2)2
+ 5[1“(1‘*‘ 2“)(93 —h, )]Bl
(1+ a)z (gz —h, )2

CE T

We have 12> o, and it follows from Lemma 1.1
that

‘a _m2‘< B,AS
3 217 1+ 2a)g, —hy)

Now the second inequality (2.2) follows by an

application of lemma 1.2 as follows:

Where t is given by (2.10).

The extremal functions for the first and third

inequality of our main result M gf (#) is

f(z)=z(@1+nz)"

2 2

b- —2a
Where N=-—2—""1 and m= 1

b, b’ —2a,

L B (6-1), ~ 5(+3a)n? - g,h,)

! B, 2 ! (1+a)2(92 —h2)2

and by, = ;1531(1+22a)(g3 - ?3)
(1+a) (gz _hz)

The extremal function for the second inequality is

B,S
f,(z) = 2(1+ 22 JE-zes o)

Remark

If & =1 inour main result M gf (¢)

Mg (g)=Mg, ()

Then we obtain

22 (u<o)
(1+20‘)(93_h3)
B
a2l < 1 <
‘a3 ;Uaz‘— (1+2a)(gs—h3) (0-1—,“—
B,A
Hzo
(1+2a)h, —g,) ( )

This result is obtained by [7]
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